神经网络通过数据学习规律,会学习到什么规律?本文提出了新的神经网络MASS(Multi-physics AI Scalar Scientist)用以学习网络从数据中学到的模型信息。这篇工作属于PINN。
文献: * Do Two AI Scientists Agree? * 源代码GitHub * Hamiltonian Neural Networks * HNN GitHub * Lagrangian Neural Networks * LNN GitHUb
神经网络通过数据学习规律,会学习到什么规律?本文提出了新的神经网络MASS(Multi-physics AI Scalar Scientist)用以学习网络从数据中学到的模型信息。这篇工作属于PINN。
文献: * Do Two AI Scientists Agree? * 源代码GitHub * Hamiltonian Neural Networks * HNN GitHub * Lagrangian Neural Networks * LNN GitHUb
通过强化学习微调生成模型,使得生成的拓扑绝缘体和拓扑材料结构准确率上升。
Reference: * Design Topological Materials by Reinforcement Fine-Tuned Generative Model
参加杨东平老师在之江实验室举办的大语言模型研讨会议,从物理、神经计算、生物等方面理解和看待语言模型以及神经网络的发展。
多智能体(Multi-Agent System, MAS)合作处理问题的思路十分流行,但是在一些热门的batchmark上并没有明显的表现差距。本文针对MAS没有性能提升的问题进行探究,总结出以下三个方面:
回顾DeepSeek模型发展过程,从最初的数据训练和模型搭建出发,为了在受限的硬件条件下创在出更加高效的模型,修改模型的架构,最后提出基于强化学习的模型微调方案。
Reference: * DeepSeek LLM Scaling Open-Source Language Models with Longtermism * DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models * DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model * DeepSeek-V3 Technical Report * DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning * DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models * Brief analysis of DeepSeek R1 and its implications for Generative AI * Auxiliary-Loss-Free Load Balancing Strategy for Mixture-of-Experts * Training language models to follow instructions with human feedback
贝叶斯优化(Bayesian Optimization)是一种基于贝叶斯定理:
$$ P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} $$
的全局优化方法,通常用于在计算代价高昂的情况下优化黑箱函数。它主要用于高效地寻找目标函数的最优解,尤其在函数不可微、函数形状复杂、或者评估函数代价昂贵(如深度学习模型的超参数优化)时特别有效。
这篇文章研究机器学习过程中,隐藏层对数据的处理方式,发现数据在等几何定律的分离,并且可以观察到类别的出现,因此总结归纳了一个可以量化的规律。
Reference: * A law of data separation in deep learning * github地址
介绍Active Learning的基本概念与算法,以及相关python库——ALiPy的使用。
The key idea behind active learning is that a machine learning algorithm can achieve greater accuracy with fewer labeled training instances if it is allowed to choose the data from which is learns.
Reference: * Active Learning Literature Survey * ALiPy: Active Learning in Python * GitHub:ALiPy